• Keyboard Shortcuts

    Shortcut keys help provide an easier and quicker method of navigating and executing commands in the computer software.

  • Hardware Tips

    Learn about the latest computer hardware and find out how to diagnose

  • Knowledge Practise questions and answers

    Here you can practise more questions and answers to improve your knowledge on computer

Monday, 4 February 2019

Application Software


Application software products are designed to satisfy a particular need of a particular environment. All software applications prepared in the computer lab can come under the category of Application software.

Application software may consist of a single program, such as Microsoft's notepad for writing and editing a simple text. It may also consist of a collection of programs, often called a software package, which work together to accomplish a task, such as a spreadsheet package.

Examples of Application software are the following −

Payroll Software
Student Record Software
Inventory Management Software
Income Tax Software
Railways Reservation Software
Microsoft Office Suite Software
Microsoft Word
Microsoft Excel
Microsoft PowerPoint

Features of application software are as follows −

Close to the user
Easy to design
More interactive
Slow in speed
Generally written in high-level language
Easy to understand
Easy to manipulate and use
Bigger in size and requires large storage space

When we type some letters or words, the computer translates them in numbers as computers can understand only numbers. A computer can understand the positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.

The value of each digit in a number can be determined using −

The digit

The position of the digit in the number

The base of the number system (where the base is defined as the total number of digits available in the number system)

Decimal Number System
The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands, and so on.

Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position. Its value can be written as

(1 x 1000)+ (2 x 100)+ (3 x 10)+ (4 x l)
(1 x 103)+ (2 x 102)+ (3 x 101)+ (4 x l00)
1000 + 200 + 30 + 4
1234
As a computer programmer or an IT professional, you should understand the following number systems which are frequently used in computers.

S.No.    Number System and Description
1   
Binary Number System

Base 2. Digits used : 0, 1

2   
Octal Number System

Base 8. Digits used : 0 to 7

3   
Hexa Decimal Number System

Base 16. Digits used: 0 to 9, Letters used : A- F

Binary Number System
Characteristics of the binary number system are as follows −

Uses two digits, 0 and 1

Also called as base 2 number system

Each position in a binary number represents a 0 power of the base (2). Example 20

Last position in a binary number represents a x power of the base (2). Example 2x where x represents the last position - 1.

Example
Binary Number: 101012

Calculating Decimal Equivalent −

Step    Binary Number    Decimal Number
Step 1    101012    ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10
Step 2    101012    (16 + 0 + 4 + 0 + 1)10
Step 3    101012    2110
Note − 101012 is normally written as 10101.

Octal Number System
Characteristics of the octal number system are as follows −

Uses eight digits, 0,1,2,3,4,5,6,7

Also called as base 8 number system

Each position in an octal number represents a 0 power of the base (8). Example 80

Last position in an octal number represents a x power of the base (8). Example 8x where x represents the last position - 1

Example
Octal Number: 125708

Calculating Decimal Equivalent −

Step    Octal Number    Decimal Number
Step 1    125708    ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10
Step 2    125708    (4096 + 1024 + 320 + 56 + 0)10
Step 3    125708    549610
Note − 125708 is normally written as 12570.

Hexadecimal Number System
Characteristics of hexadecimal number system are as follows −

Uses 10 digits and 6 letters, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Letters represent the numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15

Also called as base 16 number system

Each position in a hexadecimal number represents a 0 power of the base (16). Example, 160

Last position in a hexadecimal number represents a x power of the base (16). Example 16x where x represents the last position - 1

Example
Hexadecimal Number: 19FDE16

Calculating Decimal Equivalent −

Step    Binary Number    Decimal Number
Step 1    19FDE16    ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10
Step 2    19FDE16    ((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10
Step 3    19FDE16    (65536+ 36864 + 3840 + 208 + 14)10
Step 4    19FDE16    10646210
Note − 19FDE16 is normally written as 19FDE.

Good Morning Beautiful

Do you know????

Do you know????
/